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ABSTRACT

Creating 3D representations of multi-object scenes is crucial for many robotic manipula-

tion tasks. These representations must be inferred from noisy partial-view observations.

This thesis focuses on the problem of building a 3D representation for multi-object table-

top scenes from a single RGBD image. A common approach is to use deep learning for

this problem, however these approaches are not robust enough nor contain prinicipled

uncertainty about object geometry. This thesis examines two Bayesian approaches. Both

approaches rely on a hinge point representation. Each approach solves for a posterior dis-

tribution over object shapes. This allows both methods to capture principled uncertainty.

Experimentally, each method is shown to be accurate, robust, and capture uncertainty. Ex-

periments are performed qualitatively in the real world as well as quantitatively on proce-

durally generated scenes. A deep learning approach is used as a baseline for experiments

on both methods.
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This thesis synthesizes work from the following papers which I am the first author on:

• “V-PRISM: Probabilistic Mapping of Unknown Tabletop Scenes” By Herbert Wright,

Weiming Zhi, Matthew Johnson-Roberson, Tucker Hermans. Published in 2024 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS).

• “Robust Bayesian Scene Reconstruction by Leveraging Retrieval-Augmented Priors”

By Herbert Wright, Weiming Zhi, Matthew Johnson-Roberson, Tucker Hermans.

Submitted to for RA-L.

1 INTRODUCTION

Intelligent robots have the potential to do a lot of good for the world. Consider the task of

caretaking: robots could significantly reduce the burden of caretakers if they had the ca-

pability to perform tasks such as cooking, cleaning, dressing, and other necessary chores.

Such activities would require robots to manipulate their surrounding by interacting with

different objects. Interactions like these require a detailed 3D understanding of the robot’s

environment. For example, it would be hard for a robot to pick up most objects without hav-

ing an explicit or implicit understanding of the object’s shape. While there has been some

work on robotic systems that implicitly have 3D understanding, many robotic algorithms

require explicitly representing the 3D geometry of the scene [1], [2].

In less-structured environments, the robot doesn’t necessarily know what objects it is look-

ing at, so it must infer the shape of objects in a scene from partial-view observations. This

thesis focuses on the problem of constructing a continuous 3D representation of a multi-

object scene from a single RGBD image. This is a non-trivial problem. These observations

can be noisy and contain significant occlusion. fig. 1 shows an example of such a scene.

One common approach to the 3D reconstruction problem is to train a neural network to

perform shape completion. Unfortunately, this approach can struggle for a couple of rea-

sons. (1) Deep learning approaches can be brittle on real world scenes; (2) Deep learning

approaches generally do not provide principled uncertainty.
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Figure 1: (a) An example RGB image of a tabletop scene. (b) A segmented point cloud of
the same scene.

Uncertainty and uncertainty-awareness are important for the safe operation of robots. Un-

certainty about object shape, specifically, can be utilized in downstream tasks such as grasp-

ing [3], [4]. Many deep learning approaches lack the ability to reason about this uncertainty.

Neural networks have been known to predict incorrect labels with high confidence [5], [6].

This thesis focuses on two method that use a Bayesian approach to the 3D reconstruction

problem.

This thesis covers two methods for building 3D representations for tabletop scenes. Both

methods are able to capture principled uncertainty and are robust to many of the pitfalls of

deep learning methods. Both methods also share another commonality: the use of a hinge

point representation borrowed from the Hilbert maps [7] literature.

This thesis begins by giving an overview of some related works (sec. 2), then explains

some preliminary mathematical concepts (sec. 3). Then, in sec. 4, the V-PRISM method is

explained. Following this, the BRRP method is explained in sec. 5. Finally, sec. 6 contains

a brief conclusion.
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2 RELATED WORKS

3D Representations. There are many different ways of representing 3D geometry of a

scene. In the mapping literature, techniques such as truncated signed distance functions [8]

build voxelized representations of an environment. Hilbert maps [7], on the other hand, are

a continuous occupancy map that takes the form of a linear function over some hinge point

feature space. Hilbert map representations have also been extended to Bayesian Hilbert

maps of various forms [11]. Neural implicit functions have also been used to represent

continuous 3D geometry [14]. Other representations are built using differentiable rendering

and combining multiple views. Neural radiance fields [15] are an example of this, in which

a neural network maps 3D position to density and color. 3D Gaussian splatting [16] does

a similar thing but with a set of Gaussians instead of a neural network. Foundation models

have also been applied to this task. For example, [17] was applied to robotics in [18]. Other

representation primitives have been studied, including super quadrics [19].

3D Reconstruction with Deep Learning. Many methods have been proposed as ways

to leverage deep learning to reconstruct scenes or objects. While some methods aim to

predict object shape from RGB data only [23], we instead focus on using depth measure-

ments during reconstruction. DeepSDF [12] is a method to reconstruct an object by running

inference-time optimization to recover a latent code for a neural implicit function. In the

context of robotics, [24] extends DeepSDF to have uncertainty-awareness. Other work,

such as occupancy networks [13] or PointSDF [25] try to directly predict such a latent

code without inference-time optimization. Deep learning has also been leveraged to learn

kernels, which are used to construct a continuous signed distance function [27]. Language

is also used during reconstruction in [28] and [29]. Another work uses a voxel-to-voxel

variational autoencoder conditioned on bounding boxes [30]. While these works typically

focus on single object scenes, other work focuses on reconstruction scenes with multiple

occluding objects. For example, [31] learns a reconstruction from a voxel representation
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with different channels to account for occlusion. Another method uses silhouettes to refine

the initial reconstructions [32]. In practice, these deep learning approaches can struggle to

reconstruct noisy scenes with multiple, highly occluded, unknown objects on real world

depth cameras. Inaccurate segmentation can also be a problem for many of these methods

as well.

3D Reconstruction without Deep Learning. There are also many approaches to perform

probabilistic 3D reconstruction without deep learning. Some of such methods for recon-

struction use informative prior information by assuming fixed classes of objects, such as

3DP3 [33]. Other methods use an uninformative prior, such as Gaussian process implicit

surfaces (GPIS) [34]. There is an extension of GPIS to a slightly more informative prior

[35]. The only priors that can be enforced are specifically spherical, ellipsoidal, cylidrical,

or planar priors. Both the methods explored in this thesis reconstruct the scene without

deep learning. V-PRISM (sec. 4) doesn’t enforce an informative prior, but BRRP (sec. 5)

uses pre-existing mesh datasets to create a prior for reconstruction.

Using Reconstructions in Manipulation. 3D reconstruction methods have seen exten-

sive use in manipulation. In [25], PointSDF provides collision constraints during grasping.

PointSDF is also utilized in [36], where tactile sensors are used along with the reconstruc-

tion during grasping. A learning-based voxel representation is used for grasping in [37].

Neural shape completion is also used during the anthropomorphic grasping pipeline pro-

posed in [38]. GPIS is also a common representation for manipulation applications. Some

recent work has utilized the uncertainty from GPIS representations during grasp selection

[4]. The methods explored in this thesis provide principled uncertainty measurements that

can potentially be similarly utilized in downstream manipulation tasks.

3 BACKGROUND

This section covers Hilbert maps and Bayesian Hilbert maps in sec. 3.1. Then, in sec. 3.2,

Stein variational gradient descent is covered.
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3.1 Hilbert Maps

Hilbert Maps: Introduced in [7], Hilbert maps are a method for building an occupancy map

of an environment given depth observations. Hilbert maps represent the environment with a

continuous function, defined by a linear function of a fixed feature transform. Typically, this

feature transform is induced by a set of hinge points, {h1, ...,hH} ⇢ R3 and a translation-

invariant kernel k(d). The transform is then defined as:

�(x) = [1, k(x� h1)..., k(x� hH)]
>. (1)

Usually, a Gaussian kernel is used and hinge points are placed in an evenly-spaced grid. An

occupancy map can then be defined by a single weight vector, w 2 RH+1, as such:

m(x) = �(w>�(x)).

To recover the weight vector corresponding to a given depth observation, negative sampling

is performed along the unoccupied portions of the depth rays. These negative samples are

assigned a label of unoccupied and the points at the end of the ray are labeled as occupied.

Then, stochastic gradient descent (SGD) is performed on the binary cross entropy (BCE)

of the negative samples and terminal points of the ray. The binary cross entropy measures

the likelihood of the samples, and is defined as:

BCE(y,w>�(x)) =

8
>><

>>:

� ln

⇥
�
�
w

>�(x)
�⇤

, y = 1

� ln

⇥
1� �

�
w

>�(x)
�⇤

, y = 0

(2)

fig. 2 shows an illustration of both the hinge point feature transform and the negative sam-

ples used during Hilbert map construction.

Bayesian Hilbert Maps: Hilbert Maps were extended to the Bayesian setting in [9]. In-
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Figure 2: (a) A hinge point feature transform induced by a set of hinge points is used by
Hilbert maps [7]; (b) these maps are built by first sampling negative samples along the
unoccupied portions of the camera ray.

stead of an individual weight vector, the weight is treated as a normally distributed random

variable, w ⇠ P (w). Variational Bayesian logistic regression as described in [39] is then

performed over data D = {(�(xi), yi)}i2[n] in order to obtain the approximate posterior

distribution:

ˆP (w|D) / Q(D|w; ⇠)P (w) ⇡ P (D|w)P (w),

where the variational parameter ⇠ is introduced. The method relies on an EM algorithm

that alternates between calculating the posterior ˆP (w|D) = N (µ̂, ˆ⌃) from an approximate

likelihood function and obtaining a better likelihood approximation. The specific approxi-

mation used for the likelihood takes the form of a normal distribution, and ensures that the

approximated likelihood is conjugate to a normal prior P (w) = N (µ̄, ¯⌃).

Once the posterior weight distribution is obtained, the map m is defined by the expectation:

m(x) = E
w

[�(w>�(x))].

Because there is not an analytic solution for this expectation, approximations are used. The
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most common approximation is

E
w

[�(w>�(x))] ⇡ �

 
E

w

[w

>�(x)]p
1 +

⇡
8Var(w>�(x))

!
, (3)

which is easily obtained for any w following a normal distribution.

Extensions of BHMs include Bayesian treatment of kernel parameters and hinge point

placement [10], fusing two BHMs [11], and mapping environments with moving actors

[40].

3.2 Stein Variational Gradient Descent

Stein Variational Gradient Descent (SVGD) [41] is an algorithm for variational inference

that closely resembles gradient descent. The general problem of variational inference is to

find a distribution q⇤ 2 Q that is close to some target distribution p. Usually, this takes the

form of an optimization problem over the Kullback-Leibler (KL) divergence:

q⇤ = argmin

q2Q
KL(qkp).

SVGD aims to iteratively transform q in descent directions of the KL divergence in a d-

dimensional reproducing kernel Hilbert space (RKHS), Hd. Because this Hilbert space is a

space of functions, a descent direction requires deriving the functional gradient of our KL

divergence objective.

Theorem 1: From [41]. Let T (x) = x + f(x), where f 2 Hd and q[T ] is the density of

random variable z = T (x) when x ⇠ q. Then

rfKL(q[T ]kp)|f=0 = �g⇤q,p,

where g⇤q,p = E
x⇠q(x)[k(x, ·)rx

ln p(x) +r
x

k(x, ·)].

In SVGD, q is approximated by a set of particles x(0)
1 , ...,x

(0)
P ⇠ q(x). This can be used to
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approximate the gradient in Theorem 1 with ĝ⇤:

ĝ⇤(x) =
1

P

PX

i=1

k(xi,x)rxi
ln p(xi) +r

xi
k(x, ·). (4)

The particles can then be iteratively updated according to ĝ⇤ in eq. 4 with:

x

(t+1)
i = x

(t)
i + ✏ĝ⇤(x

(t)
i )

The result of these iterations is that the set of particles converges to an approximation of

the target distribution p. Importantly, eq. 4 only relies on the gradient of the log of p, which

means we can perform variational inference to an unnormalized distribution. Such unnor-

malized distributions are commonplace in many Bayesian inference problems, including

ours.

4 VOLUMETRIC, PROBABILISTIC, AND ROBUST SEGMENTATION MAPS

This section introduces the V-PRISM method, which stands for Volumetric, Probabilistic,

and Robust Instance Segmentation Maps. In sec. 4.1, I provide a formulation for the multi-

object reconstruction problem and give a brief overview of the method. The method is

further explained in sec. 4.2 and sec. 4.3. Then, sec. 4.4 details experiments on the V-

PRISM method.

4.1 Overview of Method

Problem Formulation. Instead of predicting an occupancy map for each object, we phrase

our problem as a multi-class mapping problem. This ensures that each point in space can

only be occupied by a single object. Without this constraint, reconstructions of objects can

intersect each other as shown in fig. 3. Formally, we receive observations {(xi, yi)}i2[n]
where xi 2 Rd corresponds to an observed point with segmented class yi 2 [c]. We assume

yi = 1 denotes xi being segmented to no specific object and is part of the background or
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Figure 3: Running a separate sigmoid model per object can cause unwanted intersections
between the reconstructions (circled). Our multi-class formulation uses a softmax model
that avoids this problem

Figure 4: Overview of V-PRISM method

table. We also assume that these observations came from a camera with a known location

o 2 Rd. The goal is to build a map function m : Rd ! [0, 1]c such that m(x) corresponds

to the probability distribution over classes that the point x could belong to.

We would like our map to satisfy that m(xi) ⇡ eyi for all i, where eyi is the one hot encod-

ing of yi. We can infer that for any xi, because the camera ray started at o and terminated at

xi, all points in between are unoccupied. We would like our map to reflect this realization.

This forms the basis for the negative sampling performed in [9]. We will also assume that

objects in the scene are resting on or above a planar surface. While this typically means a

table, our method is agnostic to the type of surface.

Method Description. Our method builds a map m(x) from segmented camera depth obser-

vations of a multi-object scene through two main steps. A high level overview is displayed
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in fig. 4. First, negative sampling is performed as described in sec. 4.3, where additional

points are added to the observed ones in order to form a new labelled point cloud. Dur-

ing this step, the RANSAC [42] algorithm is run in order to recover the surface plane the

objects are resting on. The points are also subsampled in order to increase efficiency. We

then generate a set of hinge points that are used to construct a feature transform according

to Equation (1). This transform, along with our sampled points, creates a set of augmented

data.

Once we have our transformed data, we perform Bayesian multi-class regression over the

data with an expectation maximization (EM) algorithm. The specific technique makes use

of mathematical ideas from [43]. The full EM algorithm and model are explored in sec. 4.2.

Efficiently evaluating m(x) for query x values is also covered in sec. 4.2, where we make

use of an approximation proposed in [44]. The segmentation map produced maps each

point in 3D space to a distribution over c classes, where one class denotes not belonging to

an object and the other c� 1 classes denote the segmented objects observed.

Once we have our map, we can use it to evaluate how likely different points are to be in

occupied by different objects. This is useful in many motion planning algorithms in order

to minimize unwanted collisions. We can also reconstruct the meshes of each object by

running the marching cubes algorithm [45]. These meshes can be used to create a signed

distance function, simulate physics, or to visualize the scene. Our map also encodes prin-

cipled uncertainty about the geometry of the scene which can be used for active inference.

4.2 Softmax EM Algorithm

Training. To create a Bayesian multi-class map, we consider using a weight matrix W 2
Rc⇥m where each row is normally distributed, giving the following likelihood function:

P (y = k|W,x) = softmax(W�(x))k,
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where the softmax function is defined as

softmax(W�(x))k =
exp(W�(x)k)Pc
i=1 exp(W�(x)i)

.

Because a conjugate prior for the softmax likelihood doesn’t exist, we must use variational

inference to find a posterior Gaussian distribution. In our case, we will maximize a lower

bound on the likelihood. A useful inequality for this is given in [43], and is stated in the

following theorem:

Theorem 2: From [43]. Let z 2 Rc, ↵ 2 R, and ⇠ 2 Rc
+. Then the following inequality

holds:

ln

cX

k=0

exp(zk)  ↵ +

cX

k=0

zk � ↵� ⇠k
2

+�(⇠k)((zk � ↵)2 � ⇠2k) + ln(1 + exp(⇠k)),

where �(⇠k) = ((1 + exp(�⇠k))
�1 � (1/2))/2⇠k.

Applying Theorem 2 to z = W�(x), we can bound the likelihood by introducing the two

variational parameters ↵ and ⇠ with the inequality,

lnP (y = k|W,x) � lnQ(y = k|W,x;↵, ⇠).

We can maximize this lower bound and use it as an approximation to the true likelihood by

solving the following:

argmax

↵,⇠
E

W

[lnQ(y = yi|xi,W;↵, ⇠)] .

This can be analytically solved for Wk ⇠ N (µk,⌃k), yielding the following optimal values
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Figure 5: Psuedo-code for the V-PRISM algorithm

found in [43]:

↵i =

1
2(

c
2 � 1) +

Pc
k=1 �(⇠k)µ

>
k �(xi)Pc

k=1 �(⇠k)
, (5)

⇠2i,k = �(xi)
>
⌃k�(xi) + (µ>

k �(xi))
2
+ ↵2

i � 2↵iµ
>
k �(xi). (6)

Due to the inequality used, P (y = k|W,x;↵, ⇠) is normally distributed for any ↵, ⇠ and

will be conjugate to our prior weight distribution. Thus, we have a closed-form for the

approximate posterior distribution, P (W|y = k,x) = N (µ̂, ˆ⌃). The update equations

mirror those found in [43] and are as follows:

ˆ

⌃

�1
k =

¯

⌃

�1
+ 2

nX

i=1

�(⇠i,k)�(xi)�(xi)
> (7)

µ̂k =
ˆ

⌃k

"
¯

⌃

�1
k µ̄k +

nX

i=1

✓
yi,k � 1

2

+ 2↵i�(⇠i,k)

◆
�(xi)

#
. (8)

We can use eq. 5, eq. 6, eq. 7, and eq. 8 to create an EM algorithm to iterate between
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calculating our posterior distribution and optimizing our variational parameters, shown in

fig. 5. The size of ˆ

⌃k scale quadratically with the feature dimension.

Inference. In order to make predictions about new points we need to evaluate the following

expectation:

ˆP (y = k|x) = E
W

[softmax(W�(x))]k . (9)

There is not a closed form solution to this expectation, so we must approximate it. While

we could use sampling to estimate the expectation, we instead use a more computationally

efficient approximation.

As described in [44], we can write the softmax in terms of the sum of sigmoidal terms with

the following equality:

softmax(a)k =
1

2� c+
P

i 6=k �(ak � ai)
�1

,

where c is the number of classes. This is then used as motivation for the approximating the

expectation with

E
W

[softmax(W�(x))]k ⇡
1

2� c+
P

i 6=k E[�(˜zi)]�1
,

with ˜

zi = [W�(x)]k � [W�(x)]i. When combined with the sigmoidal approximation in

Equation (3), this becomes an easily computable approximation to Equation (9).

4.3 Negative Sampling

Similar to many mapping methods, V-PRISM requires sampling negative unoccupied points

along depth camera rays. The traditional negative sampling used, mentioned in sec. 3.1, is

meant for mapping environments where the robot is in an enclosed space and each camera

ray is detecting a wall or sufficiently large object. This sampling performs poorly when the

goal is to map a relatively small object resting on a tabletop or other surface. To fully utilize
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Figure 6: Overview of our sampling method. 1. We perform stratified sampling along cam-
era rays within robj of the object. 2. Points are sampled below the table within robj of the
object. 3. Grid subsampling is performed.

the tabletop structure within the environment, we propose a new negative sampling method

designed for object-centric mapping. Our sampling method rests on two main realizations:

1. Along the ray, negative samples are most useful when near known objects.

2. Points below a surface plane cannot be occupied by objects resting entirely on or

above that surface.

We assume we have a segmented point cloud of the scene {(xi, yi)}i2[n0] where each yi cor-

responds to the segmentation label of the respective xi. We also assume a known position

of the camera o. Our sampling method begins by finding the center of the smallest axis-

aligned bounding box that contains all of the segmented points for each individual object

in the scene. We denote these centers with ok. We then perform stratified uniform sampling

along each ray, only keeping points that are within robj distance from at least one ok. Sam-

pled points within the desired radius of a center are labeled as unoccupied and added to the

collection of points for the algorithm.

Next, we run RANSAC [42] on the observed point cloud to recover the table plane. Once we

have the plane, we uniformly randomly sample points within robj from each object center

and keep any such points that fall below the plane. These points are labelled as unoccupied

and added to our collection.
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Finally, we perform grid subsampling as described in [46] with each label in parallel in

order to reduce the number of points our algorithm is fed. In practice, we choose different

resolutions to subsample empty points and points on object surfaces. This can dramatically

increase the efficiency of our method by removing redundant points. The entire negative

sampling process is shown in fig. 6.

The resulting points are then transformed to construct our set of augmented data. The trans-

form used is induced by a set of hinge points according to Equation (1). In practice, we

choose a set of hinge points consisting of a fixed grid around the scene as well as a fixed

number of random points sampled from the surface points of each object.

4.4 Experiments

We perform experiments aimed to answer the following questions: (1) Does our method

result in accurate reconstructions? (2) Does our sampling method improve map quality for

object-centric mapping? (3) Is our method robust to unknown, noisy scenes? 4. Does our

map accurately capture uncertainty about the scene geometry? We implement V-PRISM in

PyTorch and run our algorithm on an NVIDIA GeForce RTX 2070 GPU.

Baselines: We compare our method to two different baselines. The first is a voxel-based

heuristic that labels observed unoccupied voxels as unoccupied, observed occupied voxels

as their corresponding segmentation label, and unobserved voxels with the same label as the

nearest observed voxel. To prevent incorrect predictions below the table plane, we also run

RANSAC during our baseline and label all voxels under the plane as unoccupied. We refer

to this approach as the Voxel baseline. The second baseline is a learning-based approach

using a state of the art neural network architecture for continuous object reconstructions in

robotics. We take the PointSDF architecture from [25] and replace the final activation with

a sigmoid function to predict occupancy probabilities. We train this model on a dataset of

scenes generated in simulation. The scenes are composed of a subset of the ShapeNet [47]

dataset. Training it on these scenes instead of the original dataset PointSDF was trained on
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ShapeNet Scenes YCB Scenes Objaverse Scenes
Method IoU " Chamfer # IoU " Chamfer # IoU " Chamfer #
Voxel 0.198 0.014 0.324 0.018 0.336 0.024

PointSDF 0.360 0.010 0.460 0.015 0.347 0.025
V-PRISM 0.309 0.011 0.500 0.012 0.464 0.018

Table 1: Quantitative experiments comparing our method to two baseline methods on pro-
cedurally generated scenes from benchmark mesh datasets.

allows it to better function under occlusion and different scales. We refer to this baseline as

PointSDF.

Metrics: We use two main metrics for comparison: intersection over union (IoU) and

Chamfer distance. IoU is calculated by evaluating points in a fixed grid around each ob-

ject. Chamfer distance is calculated by first reconstructing the predicted mesh by running

the marching cubes algorithm [45] on a level set of ˆP (y = 1|x) = ⌧ for a chosen ⌧ of

the prediction function. Then, points are sampled from both the predicted mesh and ground

truth mesh and the Chamfer distance is calculated between these two point clouds.

Procedurally Generated Scenes: we evaluate our method against the two baseline meth-

ods on procedurally generated scenes, from large object datasets. We generate a scene by

randomly picking a mesh and placing it at a random pose within predefined bounds with

a random scale. We draw meshes from the ShapeNet [47], YCB [48], and Objaverse [49]

datasets. We generate 100 scenes for each dataset with up to 10 objects in each scene.

Objects are placed relatively close together in order to ensure significant occlusion in the

scenes. Once the poses have been selected, we simulate physics for a fixed period of time

to ensure objects can come to rest.

Our first experiment on simulated scenes compares our method with the two baselines.

Similar to [13], we use a level set other than ⌧ = 0.5 for constructing the mesh with the

neural network. We found ⌧ = 0.3 to provide the best reconstructions for our version of

PointSDF. For other methods, we use ⌧ = 0.5. We report the IoU and Chamfer distance in

Table 1. PointSDF outperforms other methods on the ShapeNet scenes, where the meshes
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ShapeNet Scenes YCB Scenes Objaverse Scenes
Method IoU " Chamfer # IoU " Chamfer # IoU " Chamfer #

w/ BHM Sampling 0.156 0.031 0.313 0.030 0.326 0.035
V-PRISM (ours) 0.309 0.011 0.500 0.012 0.464 0.018

w/o Under the Table 0.291 0.019 0.500 0.014 0.439 0.024
w/o Stratified Sampling 0.145 0.024 0.294 0.023 0.291 0.029

Table 2: Ablation experiments on our negative sampling method.

are drawn from the same mesh dataset that it was trained on. On other datasets, our method

outperforms PointSDF. This aligns with other work demonstrating that neural networks

perform worse the further from the training distribution you get. Because our method has

no reliance on a training distribution, it shows consistency across all datasets. Both our

method and PointSDF consistently outperform the voxel baseline on most datasets and

metrics. The only exception is Chamfer distance on Objaverse scenes, where the voxel

baseline outperforms PointSDF. The performance of our method relative to our baselines

indicate that our method results in accurate reconstructions

Our second experiment on simulated scenes ablates our negative sampling method. We

observe the effect of removing sampling under the table plane and removing the stratified

sampling along the ray. In order to remove the stratified sampling, we replace it with taking

discrete, fixed steps along each ray instead. We also compare against the original BHM

sampling method explained in [9], where there negative samples are drawn randomly along

the whole ray instead of near objects. This is labeled as BHM Sampling. The IoU and

Chamfer distance are reported in Table 2. Our negative sampling method outperforms the

others on each dataset and metric. This implies that our proposed sampling method does

improve reconstruction quality when compared to alternatives.

The hyperparameters used for the simulated experiments are shown in Table 3. These were

kept constant across all procedurally generated datasets and corresponding experiments.

Real World Scenes: We evaluate our method by qualitatively comparing reconstructions

on real world scenes. We use a Intel RealSense D415C camera to obtain point clouds of
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Hyperparameters Value Hyperparameters Value
(Learning) (Sampling) (cm)
kernel type Gaussian grid length 5.0

kernel � 1000 sampling robj 25.0
surface hinge pts. 32 subsample res. (objects) 1.0

iterations 3 subsample res. (empty) 1.5

Table 3: Hyperparameters for experiments on procedurally generated scenes.

tabletop scenes. In order to get accurate segmentations of the scene, we use the Segment

Anything Model (SAM) [50]. We compute reconstructions on five scenes consisting of

multiple objects. Each map of these scenes took between 2 and 5 seconds to compute. We

compare our method to PointSDF. The qualitative comparison can be seen in fig. 7. Because

these scenes are significantly more noisy than simulated scenes, PointSDF struggles to

coherently reconstruct the scene. In contrast, our method is capable of producing quality

reconstructions even with very noisy input point clouds. This suggests that our method is

capable of bridging the sim to real gap and is robust to unknown, noisy scenes.

Uncertainty: To show how our model captures uncertainty about the scene, we need a

way to quantify uncertainty. We use the entropy of our map at each point in space as a

measurement of uncertainty:

Hm(x) = �
cX

k=1

ˆP (y = c|x) ln ˆP (y = c|x).

This is maximized when the model predicts a uniform distribution over classes and mini-

mized when the model predicts a single class with a probability of 1.

We compare our method with an alternate non-Bayesian version of our method, where

we train a single weight vector with stochastic gradient descent (SGD) instead of the EM

algorithm, to minimize the negative log-likelihood of our augmented data.

To visualize this uncertainty, we calculate this uncertainty over a 2D slice from each of our

5 real world scenes. The heat maps for each slice can be seen in fig. 8. Qualitatively, we
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Figure 7: Qualitative comparisons with PointSDF reconstructions. First row: RGB im-
ages. Second row: the segmented point cloud used as input. Third row: PointSDF recon-
structions. Last row: V-PRISM’s (our method) reconstructions. V-PRISM results in quality
reconstructions on noisy scenes.

can see that our method obtains high uncertainty values in occluded sections of the scene.

This contrasts to the non-probabilistic model that does not accurately capture uncertainty

about occluded regions. The heat maps showing occlusion-aware uncertainty suggest our

model captures principled and accurate uncertainty measures.

5 BAYESIAN RECONSTRUCTION WITH RETRIEVAL-AUGMENTED PRIORS

5.1 Retrieval-Augmented Priors

Retrieval-augmented generation [51] was originally introduced in the context of improving

language generation. The work has served as inspiration for an approach to affordance-
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Figure 8: Qualitative comparison of uncertainty. Top row: the observed point cloud with
a green plane corresponding to the 2D slice where the heat maps were calculated. We
compare a non-probabilistic variant of V-PRISM trained with gradient descent (middle
row) and our method (bottom row). In the heat maps, the bottom is closer to the camera
and the top is farther from the camera. Lighter areas correspond to more uncertainty. Our
method predicts high uncertainty in occluded areas of the scene.

prediction in [52]. In our case, we draw inspiration from retrieval-augmented generation,

but we use the retrieved results to improve efficiency in certain explicit formulations for

prior density functions during Bayesian inference.

To motivate retrieval-augmented priors, consider the problem of Bayesian inference with a

mixture model acting as the prior distribution. Given some data, we would like to infer a

posterior distribution over hypotheses. If we have a mixture model as a prior distribution,

then:

P (H|D) / P (D|H)

CX

c=1

P (H|c). (10)

If our prior distribution has a lot of components, it may be inefficient to fully evaluate. This

could be a serious problem for algorithms like SVGD, which requires iteratively computing

the gradient of both the likelihood and prior. Inspired by [51], the insight behind retrieval-
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Figure 9: Overview of BRRP method. We begin with a segmented RGBD image and (a)
feed cropped images of each segment into CLIP to get object probabilities. Then, we re-
trieve and (b) register the top-k objects in the prior. This gives us a set of registered prior
samples. We also (c) compute negative samples based on the observed segmented point
cloud. Finally, (d) we run SVGD optimization to recover a posterior distribution over
Hilbert map weights. We can use this distribution to both reconstruct the scene as well
as measure uncertainty.

augmented priors is to determine which subset of the prior distribution components to re-

trieve and use given some detection result R. Conditioning on this detection result, we have

a new posterior distribution, P (H|D,R). Making an independence assumption,

P (H|D,R) / P (D|H) · Ec⇠P (c|R)[P (H|c)].

Comparing to eq. 10, the expectation now replaces the true prior. Then, we can use a top-k

approximation for the expectation:

P (H|D,R) / P (D|H)

X

c2topk

P (H|c)P (c|R) (11)

This means that we only need to evaluate a subset of the prior distribution components.

5.2 Bayesian Scene Reconstruction

Our method takes a single RGBD image and produces reconstructions for each object in

the scene. We treat the problem as a Bayesian inference problem over an observation de-

scribed by negative samples. We incorporate prior information on the shape of the object
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by leveraging retrieval-augmented priors introduced in sec. 5.1. We use CLIP [53] to de-

termine which objects to retrieve and define our object-specific priors by a registered set

of pre-computed samples from the stored mesh. We then use SVGD to optimize for a set

of samples over map weights. We can generate predicted reconstructions by taking the ex-

pected occupancy over our weights for a given location. fig. 9 shows a visual overview of

our method.

Negative Samples as Reconstruction Priors: We want to leverage existing mesh assets as

our priors during Bayesian reconstruction. We define our prior as a mixture over different

objects, c1, ..., cC . Because there is not a direct way to convert a mesh into a Hilbert map,

we instead sample points ˜xc,1, ..., ˜xc,Q 2 R3 around each object c’s mesh. We refer to these

samples as the prior samples. We give them labels ỹc,1, ..., ỹc,1 2 {�1, 1} determined by

whether they are outside or inside the mesh. Then we simply define our prior using this

data combined with a Gaussian prior over weight norm:

P (w|c) :=P ({ỹc,i}|{˜xc,i},w)P (w) (12)

/ exp(�kwk2)
QY

i=1

exp

�
BCE(ỹc,i,w>�(˜xc,i)

�
, (13)

where BCE is the same as in eq. 2.

In order to enforce pose-invariance, we first register a small stored point cloud of the object

to the observed points and then transform the prior samples to this reference frame. In

practice we use RANSAC [42] and the FPFH features from [54] to perform registration. In

order to also have scale invariance, we do a linear scan over 10 different scales and select

the the scale that resulted in the most inlier pairs from the registration.

Retrieval-Augmented Priors for Hilbert Maps: Because it would be inefficient to reg-

ister all meshes that are part of the prior mixture model, we propose using the retrieval-

augmented prior approach introduced in sec. 5.1. In order to determine which objects to
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use, we need to compute P (c|R) from Equation (11). In our case, we use CLIP [53] as a

zero-shot classifier for our different objects. For each object in our prior, we store a small

textual description of the object. These descriptions are then used as classes for CLIP to

classify each segmented object. In order to make sure CLIP knows which object we are

targeting, we crop the RGB image to fit the predicted segmentation of each object and feed

the cropped images as input into CLIP.

Once we have the probability of each object, we retrieve and register the stored point clouds

of the top-k objects. After registration, we retrieve the prior samples corresponding to these

objects to define our prior according to Equation (12).

Negative Sampling: We adopt the negative sampling method introduced in sec. 4.3. The

negative sampling method makes the assumption that all objects are lying on or above a

planar surface. We begin by labeling the points segmented to each object as occupied for

that object. Next, we perform stratified sampling along each camera ray near each object to

recover a set of negatively sampled points, labeled as unoccupied. Then, we use RANSAC

over points not segmented to any object to recover the flat surface all objects are resting on.

This plane is used to randomly sample points in a sphere underneath each object that are

near the object. We also label these points as occupied. Finally, we use grid subsampling

from [46] to reduce the number of points and increase uniformity of sampled points. We

refer to these points and labels as observed samples and denote them as {xi}i2[S], {yi}i2[S].
The entire negative sampling process can be easily parallelized for efficient computation.

SVGD Reconstruction: Once we have retrieved our prior samples and computed our ob-

served samples, we can perform optimization-based reconstruction with SVGD. Given both

sets of samples and our prior definition from Equation (12), we have the following posterior

distribution:

P ({yc,i}|{xc,i},w)P (w)

X

c2topk

P (c|R)P ({ỹc,i}|{˜xc,i},w),
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taking the log and applying Equation (13) gives us the following objective:

SX

i=1

BCE(yi,w>�(xi))

+

X

c2topk

P (c|R) ln

"
QX

i=1

exp

�
BCE(ỹc,i,w>�(˜xc,i))

�
#

+ �kwk2 + const.

In practice, we introduce multipliers to each term as hyperparameters during optimization,

drop the constant, and use means instead of sums, creating the following objective:

�3

S

SX

i=1

BCE(yi,w>�(xi)) (14)

+

�2

K

X

c2topk

P (c|R) ln

"
1

Q

QX

i=1

exp

�
BCE(ỹc,i,w>�(˜xc,i))

�
#

(15)

+ �3kwk2, (16)

where K is the number of objects retrieved for the prior. This objective is used as the log of

the target distribution, lnP (w), in Equation (4), where we also adopt the original median

kernel suggested in [41]. We also opt to use SVGD in a stochastic manner, where both the

observed samples and query samples are mini-batched.

From a non-probabilistic standpoint, one can interpret Equation (14) as the likelihood of the

observed data, Equation (15) as the object shape prior, and Equation (16) as a regularization

term.

5.3 Experiments

In this section, we aim to experimentally validate the following claims: (1) BRRP is more

robust than deep learning methods; (2) BRRP is more accurate than methods that use

uninformative priors; (3) BRRP can capture principled uncertainty. We begin by providing
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Figure 10: Sample images of procedurally generated scenes used to evaluate BRRP. Left:
a YCB scene. Right: a ShapeNet scene.

details on the experiments such as the baselines and metrics, then we introduce results and

analyses.

BRRP Implementation: We use a set of 50 objects from the YCB dataset [48] to act as

the prior for our experiments with BRRP. We implement the method in PyTorch and run

the method on an NVIDIA RTX GeForce 2070 GPU.

Baselines: We compare our work against two main baselines, V-PRISM from sec. 4.1 and

a version of PointSDF [25] that predicts occupancy and is trained on ShapeNet [47] scenes.

V-PRISM is a probabilistic mapping method that uses an uninformative prior. This means

that it is robust to novel objects, but doesn’t accurately reconstruct object backsides. We

refer to this baseline as V-PRISM. In contrast, PointSDF is a learning-based method. This

means it can leverage prior information from mesh datasets to accurately reconstruct the

backside, but can suffer in performance under significant distributional shift. We refer to

this baseline as PointSDF. When computing reconstruction meshes with PointSDF, a level

set of ⌧ = 0.3 is used.

Procedurally Generated Scenes: We use the generated scenes from sec. 4.4 to evaluate

our method. These scenes are constructed with objects from ShapeNet [47], YCB [48],

and Objaverse [49] datasets. There are 100 multi-object scenes for each mesh dataset. Each
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Method ShapeNet Scenes YCB Scenes Objaverse Scenes

V-PRISM 0.3092 0.5003 0.4640
PointSDF 0.3600 0.4601 0.3471

BRRP (ours) 0.3124 0.5277 0.4809

Table 4: Intersection over union (IoU) on procedurally generated scenes from three differ-
ent mesh datasets. BRRP uses a YCB prior and PointSDF is trained on ShapeNet scenes.

scene contains up to 10 objects. Some meshes in the Objaverse and ShapeNet scenes did not

have correctly rendered textures and were instead rendered as plain white objects. fig. 10

contains two example images of these procedurally generated scenes. We also conduct an

experiment on robustness where we perturb instance segmentation of the ShapeNet scenes

by 2 pixels and evaluate reconstructions.

We evaluate performance on the procedurally generated scenes with two metrics: intersec-

tion over union (IoU) and chamfer distance. See sec. 4.4 for further explanation of these

metrics.

Real World Scenes: In order to showcase robustness to real-world noise, we evaluate on

real world scenes collected with a Kinect depth camera. In order to obtain instance segmen-

tations, we use Grounded SAM [55] along with some depth filters. We evaluate on these

real world scenes qualitatively with images of scene reconstruction and visualizing surface

uncertainty.

Results: In Table 4, we display the IoU results from procedurally generated scenes. The

chamfer distances for the procedurally generated scenes is shown in fig. 11. The qualitative

reconstructions on real world scenes can be seen in fig. 12.

Insight 1: BRRP is more accurate than a method with an uninformative prior.

As showcased in Table 4, BRRP outperforms V-PRISM on each set of procedurally gen-

erated scenes. It has the highest IoU improvement from V-PRISM on the YCB scenes. A
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Figure 11: Chamfer distances (lower is better) for various methods across the procedurally
generated scenes. Values are reported in centimeters. BRRP has the lowest chamfer dis-
tance on each dataset.

similar pattern can be seen in the chamfer distances in fig. 11, where BRRP consistently

outperforms V-PRISM, with the biggest gap of 0.19 (cm) occuring on the YCB scenes.

This makes sense because BRRP uses a subset of the YCB objects as its prior.

We can see this improvement qualitatively in fig. 12. While BRRP and V-PRISM are com-

parable for most objects, there exist certain objects that V-PRISM predicts to occupy a large

portion of space that the object doesn’t occupy. BRRP is able to more accurately reconstruct

these objects. The clearest example of this is the dark green object in the right-most scene

in fig. 12.

Both of these quantitative and qualitative results suggest BRRP is generally more accurate

than V-PRISM. It is the most accurate when evaluated on objects in its prior distribution.

Insight 2: BRRP is more robust than a deep learning method.

While PointSDF outperformed BRRP on the ShapeNet scenes on IoU (Table 4), BRRP

had a lower Chamfer distance (Figure 11). BRRP also performed better on mesh datasets

that PointSDF was not trained on. In Table 4, we can see that on Objaverse scenes, where

the objects were novel to both methods, BRRP performed better than PointSDF. When

measuring chamfer distance, BRRP outperformed PointSDF on all datasets as shown in
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Figure 12: Qualitative comparison of BRRP and our baselines. PointSDF tends to predict
a spherical shape for many non-spherical objects. V-PRISM can sometimes predict occu-
pancy in portions of the scene that are not occupied. Our method is more robust and can
more accurately reconstruct the scenes.

Figure 11. These results suggests BRRP is more robust to different object distributions

than PointSDF.

Next, we evaluate robustness to slightly incorrect instance segmentations. We take the pro-

cedurally generated ShapeNet scenes and shift the segmentation over by 2 pixels. In Fig-

ure 13, we compare the IoU of BRRP and PointSDF on the scenes with and without the

shift. Our method performs better on the shifted scenes compared to PointSDF.

On the real world scenes in Figure 12, BRRP is qualitatively more robust than PointSDF.

PointSDF struggles with the noise associated with real world scenes as well as the novel

objects. It tends to predict a spherical object on many non-spherical objects in the real world

scenes. Our method on the other hand, is better able to reconstruct these scenes, including

the objects that are out-of-distribution for its prior.



29

Figure 13: (a) IoU of BRRP and PointSDF on ShapeNet scenes with and without shifted
segmentations. Our method is more robust to segmentation shifts. (b) An example of a
scene and the corresponding point cloud with shifted segmentation.

Figure 14: Visualization of a cylindrical container surface uncertainty from BRRP. Lighter
areas correspond to higher uncertainty about the shape. Uncertainty is high on the occluded
side of the container.

These results suggest BRRP is more robust than PointSDF. Even though by one metric

PointSDF outperforms BRRP on ShapeNet scenes, when the scenes are perturbed BRRP

performs better.

Insight 3: BRRP can capture principled uncertainty about object shape.

Figure 14 shows a qualitative example of uncertainty from BRRP. We measure the uncer-

tainty by taking the variance of logits over weight particles. Our method predicts the highest

uncertainty in areas of the surface that are occluded. This suggests that we can utilize sur-
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face uncertainty from BRRP in a similar way to how GPIS surface uncertainty is utilized

in many grasping applications.

6 CONCLUSION

Creating a 3D representation of a multi-object tabletop scene is crucial for many manipula-

tion tasks. In this thesis, I have explored two Bayesian methods for 3D scene reconstruction:

V-PRISM and BRRP. Both methods used a hinge point representation. V-PRISM used an

uninformative prior, whereas BRRP used an informative prior during reconstruction. Quali-

tative real world experiments as well as quantitative experiments on procedurally generated

scenes were performed on each method. Each method was shown to be robust and accurate

as well as capture principled uncertainty.
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